Two New Eremophilenolides from Cacalia ainsliaeflora

Man Jun MAO, Cheng Shan YUAN, Chuan Zong ZOU, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new eremophilenolides $(3\beta$ -angeloyloxy- 8β , 10β -dihydroxy- 6β -ethoxyeremophilenolide (1) and 3β , 6β -diangeloyloxy- 8α -methoxy- 10α -hydroxyeremophilenolide (2) were isolated from the roots of *Cacalia ainsliaeflora*. Their structures were elucidated by spectroscopic methods.

Keywords: Cacalia ainsliaeflora, Compositae, eremophiane sesquiterpene.

The roots of *C. ainsliaeflora* (compositae) have been used as traditional Chinese medicine for invigorating the circulation of blood, curing pellagra, rheumatismal edema and as an insecticide¹. Previous phytochemical studies on this plant revealed the presence of five eremophilane sesquiterpenes². In our continuing study of bioactive compounds, two new eremophilane sesquiterpenes were isolated from the roots of *C. ainsliaeflora*.

Compound **1**, colorless gum $[\alpha]_{D}^{20}$ +117.4 (*c* 0.60, CHCl₃). Its IR spectrum showed absorption for typical α , β -unsaturated χ -lactone bands (1763, 1713 cm⁻¹) and hydroxyl group (3360cm⁻¹). The molecular formula, C₂₂H₃₂O₇, was determined by EIMS *m*/*z* 408 [M]⁺, ¹³C NMR and DEPT spectra. Analysis of the ¹H, ¹³C NMR and DEPT of **1** (**Table 1**) indicated the presence of three methyl groups characteristic of an eremophilenolide [δ 1.95 (s, H-13), δ 1.41 (s,H-14), δ 0.93 (d, H-15, J=6.8)], an angeloyl group, an ethoxyl group and other 12 carbon atom signals (3×CH, 3×CH₂ and 6×C).

^{*}E-mail: jiazj@lzu.edu.cn

Man Jun MAO et al.

The NMR spectra (Table 1) were similar to those of eremophilenolides reported in the literature^{3,4}. In the ¹H NMR spectrum of **1** the downfield shifted signal for H-6 (δ 4.35) indicated that the the ethoxyl group located on C-6. This was supported by the long range coupling of C-6 with ethoxyl group protons and H-14 in the HMBC spectram of 1. The localization of the angeloyloxy moiety at the C-3 position was deduced from the HMBC spectrum in which H-3 gave a long-range coupling with $C_1(\delta 167.1)$ and H-15 gave a long-range coupling with C-3 (δ 71.9). In the ¹H NMR spectrum the C-14 methyl singlet at δ 1.41 was downfield from the C-15 methyl doublet (J=6.8Hz) at δ 0.92, This suggested that **1** is an A/B cis-fused compound with 8β , 10β -hydroxy groups^{4,5}. The NOESY cross-peak between H-4 (δ 1.41dq) and H-9 α (δ 2.28d) further confirmed a The missing homoallylic spin-coupling between H-6 and H-13 cis-eremophilane. showed that ethoxyl group at C-6 and the hydroxy at C-8 were β -orientation⁶, respectively. The coupling pattern observed for H-3 at δ 4.99(dt,J=3.0, 1.6 Hz) implied that the angeloyl group at C-3 was an equatorial β -orientation⁷, and this was supported by the NOESY cross peak between H-3 α and H-6 α . Therefore compound 1 was determined as 3β -angeloyloxy- 8β , 10β -dihydroxy- 6β -ethoxyeremophilenolied.

Table 1 1 H (400MHz), 13 C NMR (100MHz) data and HMBC correlations of 1 (CD₃COCD₃, δ ppm,TMS)

Н	δ_{H}	С	$\delta_{\rm C}$	¹ H- ¹³ C long range correlation
1	1.65 (m)	1	30.0 (CH ₂)	H-9, H-2
	1.83 (m)	2	27.4 (CH ₂)	H-4,H-1
2	1.35 (m)	3	71.9 (CH)	H-15, H-4, H-2
	1.95 (m)	4	36.5 (CH)	H-6, H-14, H-2, H-15
3	4.99 (d t, 3.0, 1.6)	5	47.2 (C)	H-9, H-3, H-6, H-4, H-14, H-15
4	1.41 (dq)	6	77.9 (CH)	-OCH ₂ -,H-4,H-14
6	4.35 (s)	7	153.7 (C)	H-9, H-6, H-13
		8	103.7 (C)	H-9, H-6
9	2.35 (d, 14.5)	9	44.5 (CH ₂)	H-1
	2.28 (d, 14.5)	10	74.7 (C)	H-9, H-2, H-6, H-4, H-14
		11	128.9 (CH)	Н- Н-6, Н-13
		12	170.3 (C)	H- H-13
13	1.95 (s)	13	8.7 (CH ₃)	
14	1.41 (s)	14	13.1 (CH ₃)	H-6, H-4
15	0.93 (d, 6.8)	15	12.5 (CH ₃)	H-4
OEt	3.28-3.64 (m)	OEt	65.8 (CH ₂)	H-6,CH ₃
	1.20 (t , 6.8)		14.9 (CH ₃)	-OCH ₂ -
OAng		1'	167.1 (C)	H-3, H-5', H-3'
		2'	127.5 (C)	H-4′, H-5′
3'	6.10 (qq, 7.0, 1. 6)	3'	139.0 (CH)	H-4′, H-5′
4 ′	2.00 (dq, 7.0, 1.4)	4'	20.8 (CH ₃)	H-3'
5'	1.91 (dq, 1.6, 1.4)	5'	15.7 (CH ₃)	Н-3′

Compound **2**, colorless gum $[\alpha]_{D}^{20}$ -109.8(*c* 0.56 ,CHCl₃); Its IR spectrum showed absorption for a typical α , β -unsaturated γ -lactone bands (1771, 1712 cm⁻¹) and hydroxyl group (3505 cm⁻¹). The molecular formula, C₂₆H₃₆O₈, was determined by

HRESIMS m/z 477.2474 ([M+1]⁺, calcd. 477.2483). The NMR spectra (**Table 2**) of **2** were similar to those of **1** and eremophilenolides reported in the literature^{3,4}. The position of the methoxy group at C-8 was supported by the downfield shifts of the semiketal quaternary sp³ carbon C-8 signal at δc 104.1 in the ¹³C NMR spectrum and the long-range coupling of C-8 with methoxyl group protons in the HMBC spectrum. In the ¹H NMR spectrum of **2**, the C-15 methyl doublet (J=7.2Hz) at δ 1.16 was downfield of the C-14 methyl singlet at δ 1.07 and there was homoallylic coupling(J=1.3Hz) between the H-6 α and Me-13 protons. These data indicate that **2** was an A/B trans-fused compound with 6 β -OAng, 8 α -OCH₃ and 10 α -OH^{4,5}. Therefore, the structure of **2** was determined to be 3 β , 6 β -diangeloyloxy-8 α -methoxy-10 α -hydro-xyeremophilenolide.

Table 2 1 H (400MHz), 13 C NMR(100MHz) data and HMBC correlations of 2 (CD₃COCD₃, δ ppm,TMS,)

Н	$\delta_{\rm H}$	С	$\delta_{\rm C}$	¹ H- ¹³ C long range correlation
1	2.65 (m)	1	34.5 (CH ₂)	H-9, H-3, H-2
	2.05 (m)	2	21.5 (CH ₂)	H-3, H-4, H-1
2	2.35 (m)	3	71.0 (CH)	H-15, H-4, H-2, H-1
	1.60 (m)	4	35.4 (CH)	H-6, H-14, H-15, H-3
3	5.06 (ddd, 2.6, 4.3, 4.3)	5	49.5 (C)	H-9, H-6, H-4, H-14, H-15
4	1.85 (m)	6	70.8 (CH)	H-4,H-14
6	5.83 (d, 1.3)	7	153.9 (C)	H-9, H-6
9	2.27 (d, 13.7)	8	104.1 (C)	-OCH3 , H-9, H-6
	1.95 (d, 13.7)	9	47.8 (CH ₂)	H-1
		10	72.9 (C)	H-9, H-2, H-6, H-14
		11	128.1 (CH)	H- H-6, H-13
		12	170.9 (C)	H- H-13
13	1.84(d, 1.3)	13	8.0 (CH ₃)	
14	1.07 (s)	14	9.8 (CH ₃)	H-6, H-4
15	1.16 (d, 7.2)	15	14.3 (CH ₃)	H-3
OMe	3.29 (s)	OMe	50.6 (CH ₃)	
OAng		1′,1″	166.9, 166.3 (C)	(C1',H-3), (C1",H-6)
		2',2''	141.4,137.7 (CH)	H-4′,H-4″, H-5′,H-5″
3', 3'''	6.27 (qq), 6.02 (qq)	3',3"	126.7,126.4 (C)	H-4',H-4", H-5',H-5"
4′, 4″	2.07 (dq), 1.95 (dq)	4′,4″	20.5, 20.4 (CH ₃)	H-3',H-3"
5′, 5″	2.00 (dq), 1.87 (brs)	5',5''	15.9, 15.6 (CH ₃)	H-3′, H-3″

Acknowledgment

This work was supported by the National Natural Science Foundation of China No.29972017,

References

- 1. Jiangsu College of New Medicine, A Dictionary of the Traditional Chinese Medicines, Shanghai Science and Technology Press, Shanghai, **1997**, p. 22.
- 2. M. J. Mao, Z. J. Jia, Planta Medica, 2002, 68, 55.

Man Jun MAO et al.

- S. M. Zhang, G. L. Zhao, R. Li, G. Q. Lin, *Phytochemistry*, **1998**, 48, 519.
 G. Massiot , J. M. Nuzillard, L. Olivier, P. Aclinou, A. Benkouider, A. Khelifa, *Phytochemistry*, **1990**, 29, 2207.
- 5. K. Naya, T. Matsuura, H. Makiyama, M. Tsumura, Heterocycles, 1978, 10, 177.
- K. Naya, R. Kanazawa, M. Sawada, Bull. of the Chem. Soc. of Jpn., 1975, 48, 3220. 6.
- Y. Zhao, Z. J. Jia, R. X. Tan, L. Yang, *Phytochemistry*, **1992**, *31*, 2785. 7.

Received 10 June, 2002